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SECTION I

INTRODUCTION

One of the simplest conceivable ways for determining the electro-

magnetic properties of materials is to measure the electromagnetic field

transmitted through a slab of the material under test. The corresponding

mathematical model consists of an infinite slab with transmitting and

receiving antennas placed on opposite sides of the slab. The model provides

a reasonably good approximation to the real situation of a slab of finite

extent when the distance between transmitting and receiving points is small

compared to the transverse slab dimensions.

Measurements can be made in the sinusoidal or the transient regime.

For instance, MIL standards for evaluating the shielding effectiveness of

materials (ref. 1) require that transmission measurements be made in the

steady state at prescribed frequencies and then in a pulsed regime using

wire and loop antennas placed at prescribed distances from the slab of

shielding material. Although these standards are useful for relative

comparisons, a fundamental question remains unanswered: does the measure-

ment depend only on the electromagnetic properties of the slab (and on its

thickness), or does it depend also on antenna type and orientation, antenna

distance, and (for transient measurements) on transmitted waveform?

A crude but simple method for studying (or, at least, having an

estimate of) the field coupled to the inside of an enclosure is to consider

the transmission through a slab. The slab may be perforated, or inhomo-

geneous, or described by stochastic parameters, the last case being

[4 5



relevant to near-millimeter propagation through aerosols used for camouflage

tactics. In electromagnetic pulse (EMP) experiments it is customary to

simulate the EMP plane wave signal by using rather sophisticated antennas

and guiding devices (refs. 2 and 3). An attractive alternative to this

approach can result from an understanding and exploration of the role

played by localized sources at finite distances from the test object.

The objectives of this paper are to reconsider the problem of

steady-state and transient coupling through a slab with transmitting

and receiving antennas located at finite distances from the slab; to

cast the problem in an elegant form; and to show that, at least in the

case of a highly conductive slab, simply analytical solutions to the

problem can be obtained. An important result of the paper is the deter-

mination of antenna positions and (in the transient regime) of incident

waveforms that will yield a transmitted field practically the same as that

produced by plane wave excitation.

Transmission through highly conductive slabs is certainly not a

new problem. For plane wave steady-state excitation, transmission line

techniques can easily be applied (ref. 4). For pulsed plane wave excitations,

the solution is also available (ref. 5). The situation is much less satis-

factory for the case we want to study. It is not the aim of this paper to

provide a full bibliography on this subject (for a more complete bibliography,

see reference 6). We note only that the first attempt to solve this problem

was made in 1936 (ref. 7) by acconmmodating the classical results of Maxwell

on eddy currents and thin shields to the case of two coaxial loops separated

f by a plane conducting sheet. Early studies on antenna coupling through

6



plane shields were based on low-frequency (refs. 8 and 9) or quasi-static

(ref. 10) approximations, were mainly relative to loop excitation (refs.

8 through 10), and required numerical computation (refs. 8 through 12) of

integral expressions for the transmitted field. Although the validity of

the simple transmission line theory (ref. 4) for antennas at finite distance

from the shield, or shields of finite extent has been questioned (ref. 13),

it appears that all expressions derived in the referenced literature

resemble these Shelkunoff formulas (ref. 14).

Due to the symmetry of the problem, it can easily be surmised that

plane wave expansion techniques provide a powerful tool of analysis for

an arbitrary type of excitation of an infinite slab. These techniques

have been recently applied (refs. 14 and 15) to the case of electric or

magnetic dipole excitation in parallel or coaxial configuration, by

computing the transmitted field through the use of fast Fourier numerical

programs. In this paper we shall use the same approach. However, we will

show that, although the Fourier transformation of the fields is a logical

intermediate step of the analysis, it is not needed in the final formula-

tion of the solution. Indeed, the solution can be conveniently expressed

in terms of a convolution integral, wherein the presence of the slab is

described by an appropriate transfer function. Then, at least for antennas

in coaxial configuration, the convolution integral can be analytically

evaluated both in steady-state and transient regimes and no numerical

work is necessary. Inspection of the solution allows us to answer the

original question about the influence of the finite antenna separation on

measurements. After all the mathematical machinery has been worked out

7
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and simply, physically sound, understandable results are obtained, a

discussion of the final results is presented in section V.
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SECTION II

CIRCUIT-LIKE ANALYSIS OF ELECTROMAGNETIC TRANSMISSION THROUGH A SLAB

With reference to figure 1, let us consider an infinite slab of

thickness s and characterized, in frequency domain, by permittivity C = 0oEr

permeability v=v1opr , and conductivity a. We want to compute the field

Et,Ht, transmitted at any abscissa z > s when the incident field E ,Hi,

i.e., the field produced by the sources when the slab is removed, is

known at z=O. For this purpose, it is convenient to expand the incident

field in a plane wave set, since the interaction of individual plane wave

components with the slab can be conveniently taken into account.

Accordingly, let Hz(x,y,O), El(x,y,O) be the z-components of the

field incident on the slab surface, with an assumed time dependence

exp(jwt). The corresponding spectral components h (u,v), e i(u,v) are

given, at z = 0, by

4.00 4wG

h'(u,v) = dx dy H (x,y,O) exp(jux+jvy) (1)Z (270) 2 _I . Z

+W +00

ei(u,v) = 1  dx dy Ei(x,y,O) exp(jux+ jvy) (2)
z(27r) 2 J f I Z

At z = s, i.e., at the output cf the slab, the spectral components ht(u'v),

ez (u,v) will be linearly related to the incident components (1) and (2) inz
the case of a slab made of a linear material. Hence

9
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Figure 1. Geometry of the Problem
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ht(uv) = tH(u3v) hz(uv) (3)

ez(u,v) = tE(u e(uv) (4)

The transfer coefficients tH tE can be easily computed for a homogeneous

isotropic slab by noting that the transverse spectral components ht(u,v),

t(u,v) are related to the longitudinal ones hz (u,v), ez (u,v) via the

fol lowi ng relations

w ezSx z .wh z x x zht = u2Zv (5)
-t~ u+ V2

-wI hzx z .+. wez z x K x z

= u2 (6)

wherein K = ux + vy + wz and is the propagation vector referred to a

Cartesian system of unit vectors x,y z, and upper (lower) signs refer to

waves propagating in the positive (negative) direction of the z-axis. Equa-

tions (5) and (6) represent the total spectral field as a superposition of

(ez = 0) and TM (hz = 0) parts. And, the medium being identical at both

sides of the slab, it is then evident that tH coincides with the usual

slab transmission coefficient for TE plane wave incidence and, similarly,

tE is the same as the slab transmission coefficient for TM plane wave in-

cidence. Letting

W W K + ,.a )u (u 2+ v2 (7)
-w = r (0

w._s JWC 0 w s

YH UrW YE a+ jorw (8)
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we have

4 exp (-jw s s
t(u,v) (1~ )2 x(2ws (9)

wherein y may be taken equal to y, or YE in order to obtain tH or tEs
respectively, and K = ,W i7

The spectral components hz ,ez at any z > s are equal to the corre-

sponding values of equations (3) and (4) at z--s times the plane wave

transfer function exp[-jw(z-s)]. Accordingly, any z-components Fi(x,y,z)

of the field transmitted at any arbitrary abscissa z > s will be expressed

in terms of the double Fourier integral

Ft(X'YtZ)=j du f dv fi(u,v) t(uv) exp[-jw(z-s)3
).- -¢

• exp(-jux - ivy) (10)

i i i
wherein f may be taken equal to h or e and, correspondingly, the valuesz z

of tH or tE should be used.

On the other hand, the spectral representation of the z-components

of the incident field (the slab is now removed) at any abscissa z is ob-

viously the following:

+Wo +00

F (x,y,z) - du dv f (u,v) exp(-jwz) (11)

• exp(-jux - ivy)

12
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Comparison of equations (10) and (11) shows that the transmitted field can

be computed as the double convolution of the incident field and the double

Fourier transform of t(u,v)exp(jws), hence

4M +to

Fxz ) = 'y-2  f dx' fdy' Fz(x'.y'1z) T(x-x',y-y') (12)

T(xy) = du f dv t(u,v) exp(jws) exp(-jux - ivy) (13)

In the words of system theory, Ft is identified with the output of

a linear system described by the unit response function (13) and excited

i
by the input Fi.

We further note that relations similar to equation (12) exist

between the transmitted and incident transverse components of the field,

as easily follows from equations (5) and (6). It is only necessary to

decompose the incident field in its TE and TM parts and then apply super-

position.

13
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SECTION III

THE AZIMUTHALLY SYMMETRIC CASE

A case of particular interest is obtained when the incident field is

not depending on x and y separately but rather upon the transverse coordinate

p = .+y7. For instance, if the source is taken equal to an elementary

electric or magnetic dipole parallel to the z-axis at P(O,O,-d), then

K

l W i A (14)

K 2 T jP p

wherein

A(p,z) = C ()(d+z)2 ) (1)

p2+ (d+z)2

and is an electric or magnetic vector potential, the source intensity being

proportional to the constant C.

The integrals (12) and (13) can now be simplified by using the change

of coordinates

x a p cos * ; y p sin ; u E cos ; v- sin p (16)

Accordingly,

14

' A ... 1o . *



T(x~y) =T(p) f d& t(&) exp~j f/CT7 s)
0

27r21 exp[-jp & cos(ip-0)J di,

0

=2w f & d& J 0(p&) t(&) exp(j/IC2-& S) (17)

0

and the field transmitted on the axis is given by

F)(O,0,z) = f p dp F i(pd+z) T(p)
0 (18)

= f d& exp(j I s) t(&) f p dp F (p,d+z)J0(P)

o 0

wherein the order of integration has been reversed. Upon substitution of

equation (14) in (18) the inner integral can be evaluated by repeated

integration by parts as follows

f p dp F (p,d+z) Jo(p&) =

0

0 e Go C 2  xp  -jK fpr, (d+z)7 Jo(p&)dp

Jp2, (dz)]
C 2 exp [-j i (dz] (19)

K, 1, C

I &1



the last expression stemming out from a known Fourier-Bessel transform

(ref. 16). Note that 1 -- -jV4 --K for C2 2 and that we have

implicitly assumed in this section K 0.

The formal expression for the z-component of the field transmitted

through the slab is now the following

Ft(0,0,z) = WCK (1 -u2)t(u)exp(-jKZu)du (20)

wherein X = d-s+z, the integration path r is depicted in figure 2, and

the substitution K2 -2 = 2u2 has been used.

16
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SECTION IV

THE CASE OF AN ELECTRIC PLANE SHIELD

1. STEADY-STATE EXCITATION

A case particularly interesting for applications is obtained when

1r = 1, a >> woCr' i.e., when a highly conducting nonmagnetic slab is used

as a shielding screen. As already noted in section I, this is an important

configuration in shielding theory and practice. The solution to this

problem is available in numerical form (refs. 14 and 15) for prescribed

sinusoidal time variation and arbitrary spatial dependence for the fields;

and in analytical form (ref. 5) for prescribed plane wave excitation and

arbitrary time variation.

The case of a magnetic dipole excitation is considered first. The

expression for t(u) pertinent to this case is the following

t(u) 4u a + u2  exp -j a" +u 2 Ks
H'u 2(21)

(u~ s/u +) 1T [ u 2J exp(-2j/a +U KS)

a + jWEO(Er-l) a(a 2€ J0 o  (22)

It is noted that tH(u) exhibits no singularity in the lower right quadrant

of the complex u-plane, so that the integration path r can be freely deformed

therein, e.g., in the new path r' (figure 2). When expression (21) is

substituted in (20), it is noted that we can neglect u
2 with respect to 2

provided the integrand is negligible when u > jcl. Accordingly, when

Kx al >> I the integral (20), specified to the case at hand, becomes

18



Ht(0.0.) -jwCK exp(-Jccs) exp(-jKt)
Z 1 - exp(-2joKs)

JV\-iV + 3v+ 2j) exp(-KIcv) dv (23)
0

and the origin of coordinates is now t = 0. The integral is now straight-

forward to evaluate and can be conveniently normalized to the value of the

incident field Hi(0,0,L). We have

Hz(O'O') 4 exp(-jacs) I 1 + + 1
H I(O,0,t) a I - exp(-2jaKs) 1 +
z IIK

= to(a,KS) SH(Id) (24)

It is noted that the first bracketed term t (a,es) is just the plane

wave transmission coefficient under normal incidence and appropriate to a

highly conducting screen. The second term S(KI) depends on the mutual

distance I between transmitting and receiving points and approaches 1 when

Ki >> 1. Accordingly, it follows that simple plane wave transmission coef-

ficient can be used for evaluating shielding effectiveness provided that

transmitting and receiving antennas are a few wavelengths apart.

On the other hand, when KI is small IH(K9) = 3/jK9, and

H)(O'') 3 exp(-joKs - j7r/4) 36(
- to (a,cs) (25)H(0,0,9-) t s [1- exp(-2joucs)]

19
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wherein 6 is the skin depth of the screen. Note that equation (25) is valid

provided that 6/% << 1, otherwise the assumption Kjalc >> I is no longer met.

The case of an electric dipole excitation can be treated similarly.

We have

-(u) 4a 2u Pa +U exp(-j 1;+ I S)
tE~u - auu~ 2 *2  a c2 u +u -Va2+u2]2 ep J~ is

Sua u + (26)

2 2We can now neglect u with respect to a without serious limitation in the

validity of the results. The integral corresponding to equation (23) is

the following

E (0,0,.) = WCK t(a,Ks) exp(-jKLu) du +

U

+ j I (1-ju) exp(-Ktv) d (27)

v)

which can be easily evaluated to yield
~E1(0,0.1)

)= t C(,iKs) SE(I)

Ei(O,0,L) 
0

(28)

1 + JKIc + (jKt)2 exp(jck) Ci (icl) - jsi (ai)]1 .

TI

wherin the cosinus integral Ci(x) and sinus integral si(x) functions

(ref. 17) do appear.

20



It is again noted that QE(Kk) - I when Kk >> 1, as easily follows

upon use of the asymptotic series expansions (ref. 17) of the functions

Ci(x) and si(x), so that expression (28) reduces again to the plane wave

transmission coefficient to(a,KS) provided that transmitting and receiving

antennas are a few wavelengths apart. On the contrary, when Kz is small,

a proper series expansion (ref. 17) shows that QE(KZ) jKZ/2 and

E0 to(t,'s) =

Ei(O,0, )  2Ez

exp(-jaKs + jir/4 (KY)2 6 (29)
1 - exp(-2jacs) V,

2. TRANSIENT EXCITATION

We have shown under section IV.l that the steady-state z-components

of the field transmitted through a highly conductive plane shield are

given by

F'(O,O,Z) = Fi(O,0,)t (a,KS)S(Kk) (30)

z z 0

It is then evident that the z-components of the transient transmitted field

can be obtained by time-convolving the transient z-components of the incident

field with the inverse Fourier transforms of to( ) and sl(w), say To(t) and

o(t). Use of Laplace inversion tables (ref. 18) shows that

To(t) 2 n exp('n 2 t) (2n 2n - t)

"n4 ] n- ,i ep '9 ~l L 4/ 'T( tS(t) (31)1 1

21
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where T = /E77 and is the relaxation time of the material of the shield,

0

n = s2 /c2 and is the diffusion time through the shield thickness.

A qualitative behavior of the first term n=l of T0 (t) is given in

figure 3, wherein Smax = 4 /T7 -7--j = S (2n) and is the maximum value of the

function S (t) (figure 4). In Smax "e" is the Neper's constant.

The behavior of successive terms of the series (31) is similar to that

depicted in figure 3. The maxima occur at later times and their absolute

values are smaller by the factor exp[-2.6(n2 - 1 )]/n3. Accordingly, they

can be safely neglected and we can take the only first term of the series (33).

After some algebra, Laplace inversion (ref. 19) of the two functions

Q() leads to

MH(t) = 6(t) + 3 - exp(-t/T) U(t) (32)H T

RE(t) = S(t) - 2 exp(-t/T)U(t) +

Et/T

+3 t / T - exp(-u)4 du (33)

T o (+ I -U)T

where 6(t) and U(t) are the Dirac and the unit step function, respectively,

T = t/c and is the free-space transit time from the transmitting to the

receiving antenna.

Convolution of (31) with the S(t) terms of (33) and (34) just reproduce

the function To(t). Convolution with the other terms may become significant

only after a time of order T. Accordingly, if the incident field has a

time duration small compared with T, i.e., its spatial length is small

compared with the in-between antennas distance Z, then the time dependence

22
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Sma S 4ma max 2Te'

007 0.38v7

Figure 3. Qualitative Behavior of the First Series Term of the Function T O(t)
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F zt  (t*) 4 22

Smax  S ax =

I 

I

Figure 4. Qualitative Behavior of a Pulsed Field of Time Duration

T' after Transmission through a Highly Conductive Slab
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of the transmitted field is simply given by the time convolution of the

incident signal and the function T ot). This transmitted field is the same

that would be obtained for the case of plane wave excitation. Accordingly,

the result is obtained that the finite distance between antennas plays no

significant role if the incident waveform is sufficiently short in time.

For instance, if the incident signal is a pulse of unit amplitude 
and time

duration T', then

F)(O ,O,,t*) = 4 .tI expC-n/t* t < T' (34)

weeFt(O,O,i,t 4 1ep-/t x(nt -T') t >TV (35)

z 7-

where t = t - (X/c) and is the retarded time. A qualitative sketch of

equations (34) and (35) is given in figure 4 for T' > 
2n. When T' << 2n,

then the transmitted field is just given by (31) times TI.

........... 25



SECTION V

CONCLUSIONS AND PRACTICAL CONSIDERATIONS

We have considered the problem of transmission of steady-state and

transient electromagnetic waves through a slab. An analytical solution

has been obtained for the case of a linear, homogeneous, isotropic, highly

conducting infinite slab excited by collinear electric or magnetic dipoles.

The transmitted z-components of the field are expressed as the product

(steady-state case) or the convolution (transient case) of the corresponding

incident field components and a two-term factor. In the frequency domain

the first term of this factor (equation (30)) is exactly the transmission

coefficient of a plane wave normally incident on the slab. The second term

takes into account the finite distance between the transmitting and receiving

antennas and becomes significant only when this distance is of the order of,

or smaller than, the free-space wavelength (steady-state case) or the spatial

length of the incident pulse (transient case). It is therefore possible to

obtain plane wave excitation results even when sources (and receivers) are

located at finite distances. For this, all that is needed is the proper

choice of distance between antennas.

It is certainly true that these results have been obtained under the

conditions that the transmitting antenna is a dipole oriented normal to the

slab;that the transmitted field is computed along the axial direction of the

dipole; and that only the z-components of the field are used in the compari-

son. However, we believe that our analysis has a more general validity.

For instance, results of the collinear configuration can easily be extended

to transmitted field points off the axis. We should only substitute

26



(36)

for J (Ep) in equation (12). Then expansion (ref. 20) of the Bessel function

(36) and integration in 0' gives

F to(P.) = k i (1 - u2) t(u)Jo ( KP F u7)exp(-jKZu)du (37)

which is the generalization of (20) to the case p 0 0. Then aFt (p,Z)/ap = 0

for p = 0, which implies that results of our analysis are certainly valid

also in the neighbors of the axis. Furthermore, use of Maxwell's equations,

with (37) as longitudinal fields, shows that the same is true for transverse

fields.

Should further study show that the above considerations can be extended

to more complicated geometries, all simulation studies for shielding purposes

might be worth reconsidering.

Some few practical notes are now in order. Reference is, made to a

copper slab (a = 5.8x lO7 siemens/m) of thickness s = 1 mm, so that

= 1.52x 10 19sec and n = 70 psec. Only the plane wave transmission

coefficient will be considered. For incident pulses of unit amplitude and

time duration T' << q, the peak of transmitted field is equal to

6.9x 0 -8 T'/n, therefore linearly decreasing with the bandwidth -- l/T' of

the signal. In the sinusoidal excitation case, the attenuation due to the

mismatch, 41al, equals that due to the damping inside the slab material,

exp(-Iajocs/ 7), at the frequency f = 0.72 MHz. At this frequency,

the transmitted field is equal to 11 x 10 12 times the incident one. At
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higher frequencies, the signal is decreasing exponentially with the

square-root of the frequency.

For moderate antenna spacings, it is noted that the transr~itted

field can be computed using the plane-wave transmission coefficient only

when the attenuation is very high. However, this may not be the case if

even small apertures exist in the screen. Accordingly, we believe it is

worthwhile to extend the analysis presented in this paper to other canonical

problems, which are amenable to the same analytical approach. Among those,

we list the problem of an infinite conductive screen with a regular lattice

of equal small apertures. The former problem can take advantage of the

solution of a plane wave diffraction by apertures in conducting screens

(refs. 21 through 23) and, eventually, of symmnetrization procedures (ref. 24).

The latter could make use of artificial dielectric theory (ref. 25) properly

accommnodated to this single sheet problem.
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